
 

Simple vs. Complex Bootstrap for Estimating Variance of Average 
Treatment Effect Using Propensity Score Matching 

Objectives 
The purpose of this project is to compare two methods of bootstrapping when using              
propensity-score matching to estimate the average treatment effect on an observational           
study. Bootstrapping is a method of calculating the variability of a treatment effect by              
sampling from observed data with replacement. Propensity-score matching is a method of            
reducing confounding on the treatment effect by ensuring that matched treatment-control           
pairs have similar baseline covariates. Propensity-score matching scores each observation          
based on the probability that they are in the treatment group given their initial covariates.               
Each observation in the treatment group is matched to the observation in the control group               
with the closest score.  
 
When estimating the average treatment effect, the golden standard is a randomized control             
trial (RCT) due to its ability to almost guarantee a balance across baseline covariates              
between exposed and unexposed groups by randomizing treatment. This removes the           
potential for confounding and allows one to make a statement on the causal effect of the                
treatment on the outcome. In situations where one only has access to observational data,              
there is a potential for confounding from the covariates which reduces one's ability to              
comment on the causal relationships. Propensity scores are used to try to replicate an RCT               
in order to reduce confounding and understand the causal effect the treatment has on the               
outcome. 
 
We are interested in seeing which bootstrap performs the best under different degrees of              
confounding of the covariates. We will generate highly, moderately and minimally           
confounded data and compare the results from the bootstraps with the true value abstracted              
from the generated data.  

Statistical methods to be studied 
Propensity-score matching is a method for estimating treatment effect and bootstrapping is            
used to estimate its variance. For propensity score matching, nearest neighbor methods            
were used to match treatment and control observations based on their baseline covariates.             
The nearest neighbor method matches each treated observation with the untreated           
observation with the closest score. 
 
Bootstrapping can be used before or after propensity-score matching, known as complex or             
simple bootstrapping, respectively. A bootstrap is a resampling of observed data with            
replacement and each bootstrap sample contains the same number of observations as the             
original sample. By taking many bootstraps of our original data, it is possible to simulate               
multiple samples from a population. This allows one to estimate the variability in the average               
treatment effect in different samples of the same population.  
 
We will study whether performing propensity score matching on each bootstrap sample            
predicts a better estimate of this variance compared to bootstrapping on already matched             
samples. The former accounts for the variability in propensity score matching on top of just               
the sampling variability (Fig. 1), hence will be higher than that of the later.  



 

 

 
Figure 1. ​ Simulation Procedure 

Scenarios to be investigated  
The goal of this simulation study is to compare the performance of the simple bootstrap and                
the complex bootstrap in estimating the sample variabilities of the estimated treatment            
effects using propensity-score matching. 
 
In total, 15 scenarios were investigated in the simulation study (table 1). To compare the               
performance of the simple bootstrap and the complex bootstrap in estimating the sample             
variabilities under different confounding relationships, we designed 3 different levels of           
confounding relationships, which were “weak”, “relatively strong” and “strong”. The          
proportion of the subjects exposed (or receiving treatment) was set to 0.1, 0.2, 0.3, 0.4, 0.5                
under each confounding relationship. We conducted both simple and complex bootstrap           
methods under each scenario to attain the average treatment effect on the treated (ATT) and               
its variance, which can be used as the estimate of the true treatment effect and the variance                 
of the estimated effect. The true treatment effect under each scenario was set to 1.  
 

Table 1. ​ Scenarios to be investigated 

Scenario  π confounding 
relationship 　 Scenario  π confounding 

relationship 　 Scenario  π confounding 
relationship 

1 0.1 

Weak 

 6 0.1 

Relatively 
Strong 

 11 0.1 

Strong 
2 0.2  7 0.2  12 0.2 
3 0.3  8 0.3  13 0.3 
4 0.4  9 0.4  14 0.4 

5 0.5 　 10 0.5 　 15 0.5 
 *π: the proportion of the subjects being exposed or receiving treatment 



 

Methods for generating data 
In this study we only considered the scenario with a continuous outcome, although a binary               
outcome would also be possible. How to generate a binary outcome is included in the R                
code for generating all the data in ​https://github.com/jaredgarfinkel/P8160_project1_group1 ​.  
 
Firstly, we created 10 baseline covariates ( ~ ), where ~ N(0,1), i = 1, 2, … 10. All      X1   X10   Xi           
of these covariates were set to have different effects on the exposure or outcome depending               
on the degree of confounding we were exploring. The data generated for the three different               
levels of confounded data is described below. 
 
1. Strong confounding covariate 

 
For a strong confounding relationship, we assumed that ~ affected the exposure        X1   X7     
status and ~ affected the outcome. For each subject, the probability of being  X4   X10            
exposed ( ) can be determined by using a logistic model:P i  

 
ogit X X X X X X Xl (P )i = β0treat + βw 1 + βM 2 + βS 3 + βW 4 + βM 5 + βS 6 + βV S 7  

 
The intercept of the model was used to determine the proportion of subjects being exposed               
in the data. The coefficients , , , and were set to log(1.25), log(1.5), log(1.75)     βw  βM  βS   βV S        
and log(2). These denote weak, mediate, strong and very strong effects on the exposure              
status. For each subject, the event of being exposed or unexposed follows a Bernoulli              
distribution with the parameter . Accordingly, we can generate the exposure status for    P i          
each subject from a Bernoulli distribution with the subject parameter , where          P i   

. The continuous outcome was generated as:P i = exp[ logit(P )]i
1+exp[ logit(P )]i

      
, using the samereat X X X X X X XY = t + βW 4 + βM 5 + βS 6 + βV S 7 + βW 8 + βM 9 + βS 10 + εi     

coefficients as above.  represents noise, set to follow .εi ～N (0, )ε 3  
 

 
Figure 2. ​ Basic steps for generating the strong confounding data 

 
 

https://github.com/jaredgarfinkel/P8160_project1_group1


 

 
2. Relatively strong confounding covariate 

 
For a relatively strong confounding relationship, we had covariate affect the exposure         X7     
status and ~ affect the outcome. For each subject, the probability of being exposed  X4   X10             
( ) can be determined by using a logistic model:P i  

 
ogit Xl (P )i = β0treat + βV S 7  

 
The coefficient was set to log(2) and intended to denote a very strong effect of on  βV S               X7   
the exposure status. The remaining procedure for generating the exposure status and            
continuous outcome for each subject follows the same steps in generating strongly            
confounded data described in (1). 
 
3. Weak confounding data 

 
For a weak confounding relationship, we had covariate affect the exposure status and        X4       

~ affect the outcome. For each subject, the probability of being exposed ( ) can beX4   X10             P i    
determined by using a logistic model: 

 
ogit Xl (P )i = β0treat + βw 4  

 
The coefficient was set to log(1.025) and intended to denote a weak effect of x on the  βw              X4   
exposure status. Since log(1.025) was close to zero, the effect of on the exposure status           X4      
and outcome should be very weak. The remaining procedure for generating the exposure             
status and continuous outcome for each subject follows the same steps in generating             
strongly confounded data described in (1). 

Performance measures 
We are interested in comparing the simple bootstrap versus the complex bootstrap’s ability             
to estimate the average treatment effect and the variability around this effect. The average              
treatment effect on the treated is the E[y​i1 − y​i0 ​| D = 1], meaning the average difference in                   
the outcome variable for the exposed group and the unexposed group, given they are              
diseased.  This can be calculated by: 
 

(y​i1​ − y​i0​)TT  1/nA =  ∑  
 

where i = 1, 2, …., n represents the i ​th matched pair, y​i1 represents the outcome of the                  
exposed observation from the i ​th matched pair, and y​i0 represents the outcome of the              
unexposed observation from the i ​th​ matched pair. 
 
The ATT slightly differs from the average treatment effect, which is E[y​i1 − y​i0​], which relies                
more heavily on equal covariates across the exposed and unexposed. In order to reach this               
balance the data ideally comes from a randomized controlled trial. Since here we are              
imitating an observational study, we solely consider estimating the ATT. 
 
Bootstrapping is a common nonparametric method used for estimating the variance of an             
estimated value from a statistical model. We suspect both bootstrap methods will perform             
well in estimating the ATT. However, we believe there will be more of a discrepancy when                
estimating its variance, Var(ATT), or the variation in estimated ATT due to sampling             



 

variability. This is the main performance measure of interest and we will focus on which               
bootstrapping method is closer to the true variance from the generated data. 

Simulation results  
 
Table 1, 2, and 3 below show the results of the estimated variance under all the different                 
scenarios we were interested in exploring. The relative difference can be found by             
calculating absolute difference divided by the true variance. The simple bootstrap has a             
closer estimate of the variance in every scenario (Fig. 4, Fig. 5) and has very close estimates                 
for the most part. The complex bootstrap, on the other hand, does not perform as well and                 
performs worse as confounding becomes stronger. This may be a result of the confounding              
relationship being too high for propensity score matching method to effectively reduce as             
much confounding, such that there is a lot of variability in the propensity score matching and                
it is overestimating the variance. This indicates the simple bootstrap produces more reliable             
variances and should be used. 
  
From Figure 3, for different treatment selection probabilities ranging from 0.1 to 0.5 and              
different levels of confounding, ATT estimated using the simple bootstrap versus the            
complex bootstrap vary in terms of proximity to the true value. The methods perform very               
similar to one another and there does not appear to be a trend in performance for different                 
parameters. Figure 4 supports the lack in trend, therefore we would recommend using the              
simple bootstrap for predicting variance purposes although it does not necessarily perform            
superior for the estimate. 
 

Table 2. ​ Sample and true variance of Bootstraps with weak confounding 

Probability 
of 

Treatment 
Selection 

True 
Varianc

e 

Simple Bootstrap Complex Bootstrap 

Estimated 
Variance 

Absolute 
Difference 

Relative 
Difference 

Estimated 
Variance 

Absolute 
Difference 

Relative 
Difference 

0.1 0.2391 0.2556 0.0165 0.0690 0.3175 0.0784 0.3279 

0.2 0.1185 0.1252 0.0067 0.0565 0.1292 0.0106 0.0895 

0.3 0.0795 0.0909 0.0113 0.1421 0.0936 0.0140 0.1761 

0.4 0.0703 0.0715 0.0012 0.0171 0.0841 0.0138 0.1963 

0.5 0.0613 0.0617 0.0005 0.0082 0.0840 0.0227 0.3703 

 

 
 
 
 
 
 
 
 



 

 
Table 3. ​ Sample and true variance of Bootstraps with relatively strong confounding 

Probability 
of 

Treatment 
Selection 

True 
Varianc

e 

Simple Bootstrap Complex Bootstrap 

Estimated 
Variance 

Absolute 
Difference 

Relative 
Difference 

Estimated 
Variance 

Absolute 
Difference 

Relative 
Difference 

0.1 0.2049 0.2238 0.0188 0.0918 0.3175 0.0784 0.3826 

0.2 0.1110 0.1146 0.0037 0.0333 0.1292 0.0106 0.0955 

0.3 0.0836 0.0848 0.0012 0.0144 0.0936 0.0140 0.1675 

0.4 0.0674 0.0675 0.0001 0.0015 0.0841 0.0138 0.2047 

0.5 0.2049 0.0666 0.0015 0.0073 0.0840 0.0227 0.1108 

 

 
 
 
Table 4. ​ Sample and true variance of Bootstraps with strong confounding 

Probability 
of 

Treatment 
Selection 

True 
Varianc

e 

Simple Bootstrap Complex Bootstrap 

Estimated 
Variance 

Absolute 
Difference 

Relative 
Difference 

Estimated 
Variance 

Absolute 
Difference 

Relative 
Difference 

0.1 0.1724 0.1911 0.0187 0.1085 0.2619 0.0896 0.5197 

0.2 0.1149 0.1048 0.0101 0.0879 0.1470 0.0321 0.2974 

0.3 0.0968 0.1009 0.0041 0.0424 0.1271 0.0303 0.3130 

0.4 0.0800 0.0804 0.0005 0.0063 0.1175 0.0376 0.4700 

0.5 0.0726 0.0888 0.0162 0.2231 0.1109 0.0383 0.5275 

 



 

 
Figure 3. ​ Estimated and True ATT 

 
Figure 4. ​ Absolute Difference of ATT (Estimated v.s. Ture) 



 

 
Figure 5. ​ Estimated and True Variance 

 
Figure 6. ​ Absolute Difference of Variance (Estimated v.s. Ture) 
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Appendix

Data Generation

## set values for all variables
N = 1000 # sample size = 1000

for(i in 1:10){
assign(paste0("x.", i), rnorm(N))

} # create 10 variables

# define linear terms
beta.0.treat = log(0.5) # log(pi/1-pi)
beta.effect = -log(3) # 1/3 => the proportion of log odds(of disease
#d vs not diseased) reduced by receiving the treatment
beta.low = log(1.25)
beta.med = log(1.5)
beta.high = log(1.75)
beta.v.high = log(2)

# treament selection
logit.treat <- beta.0.treat + beta.low*x.1 + beta.med*x.2 +

beta.high*x.3 + beta.low*x.4 + beta.med*x.5 + beta.high*x.6 + beta.v.high*x.7

p.treat <- exp(logit.treat)/(1 + exp(logit.treat)) # probability of treatment selection

treat <- rbinom(N,1,p.treat) # assign treatment based on the calculated probability

# generate the continuous outcome
y <- 1*treat + beta.low*x.4 + beta.med*x.5 + beta.high*x.6 + beta.v.high* x.7
+ beta.low*x.8 + beta.med*x.9 + beta.high*x.10 + rnorm(N,0,3)

## Create the dataframe
df = tibble(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8,x.9,x.10,y,treat) %>%

select(y, treat, everything()) %>%
mutate(treat = as.logical(treat == 1))

Functions

# bootstrapping
boot_sample = function(df) {

sample_frac(df, size = 1,replace = TRUE)
}
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# matching; the input is the dataframe with observations
#unmatched and the output is the dataframe with only matched observations.
match = function(df){

mode_match = MatchIt::matchit(treat ~ x.1+x.2+x.3+x.4+x.5+x.6+x.7,
method = "nearest",
data = df,
ratio = 1,
caliper = 0.01
)

return(match.data(mode_match))
}

# Estimation of average treatment effect of the treated
#(ATT)=sum(y exposed- y unexposed)/# of matched pairs
ATT = function(df){

sum = df %>%
group_by(treat) %>%
summarise(sum = sum(y))

sum_diff = sum[2,2]- sum[1,2]
result = sum_diff/(nrow(df)/2)
return(result$sum)

}

# define a function to do the simple bootstrap(by bootstrapping the index of each observation)
resample_index = function(df){

df1 = df %>%
filter(treat == 1) %>%
arrange(distance)

df1 = df1 %>%
mutate(index = 1:nrow(df1))

df2 = df %>%
filter(treat == 0) %>%
arrange(distance)

df2 = df2 %>%
mutate(index = 1:nrow(df2))

selected_index = sample(c(1:(nrow(df)/2)), nrow(df)/2, replace = T) #resample the index
df3 = rbind(df1[selected_index,],df2[selected_index,])
return(df3)

}

#define a function to regenerate data for 1000 times
regenerate_df = function(seed){

set.seed(seed)
# generate data
N = 1000 # sample size = 1000
for(j in 1:10){

assign(paste0("x.", j), rnorm(N))
} # create 10 variables

# define linear terms
beta.0.treat = log(pi/(1 - pi)) # we choose 0.1 to 0.5 as pi
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beta.effect = -log(3) # 1/3 => the proportion of log odds(of diseased vs not diseased) reduced
beta.low = log(1.25)
beta.med = log(1.5)
beta.high = log(1.75)
beta.v.high = log(2)
# treament selection
logit.treat <- beta.0.treat + beta.low*x.1 + beta.med*x.2 + beta.high*x.3 +

beta.low*x.4 + beta.med*x.5 + beta.high*x.6 + beta.v.high*x.7
p.treat <- exp(logit.treat)/(1 + exp(logit.treat)) # probability of treatment selection
treat <- rbinom(N,1,p.treat) # assign treatment based on the calculated probability
y <- 1*treat + beta.low*x.4 + beta.med*x.5 + beta.high*x.6 + beta.v.high* x.7
+ beta.low*x.8 + beta.med*x.9 + beta.high*x.10 + rnorm(N,0,3)
# create df
df = tibble(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8,x.9,x.10,y,treat) %>%

select(y, treat, everything()) %>%
mutate(treat = as.logical(treat == 1))

return(df)
}

True Variance

generate = tibble(
seed = 1:1000

) # create a dataframe to do 1000 independent experiments

# regenerate data
generate = generate %>%

mutate(new_df = map(seed,regenerate_df))
# do the matching for each regenerated data
generate = generate %>%

mutate(matched_df = map(new_df,match))
# calculate the treatment effect
generate = generate %>%

mutate(ATT = map(matched_df, ATT))
# calculate the true effects & true variance
mean(as.numeric(generate$ATT))
sd(as.numeric(generate$ATT))

Simple Bootstrap

df_sim = match(df) # match the data first

bootstrap_sample_sim = tibble(
strap_number = 1:1000,
strap_sample = rerun(1000, resample_index(df_sim))

) # simple bootstrap
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# calculate the average treatment effect
att_sim = NULL
for (i in 1:nrow(bootstrap_sample_sim)) {

att_sim[i]= ATT(bootstrap_sample_sim$strap_sample[[i]])
}

# add estimated treatment effect to the boostrap samples
bootstrap_sample_sim = cbind(bootstrap_sample_sim,att_sim)

Complex Bootstrap

bootstrap_sample = tibble(
strap_number = 1:1000,
strap_sample = rerun(1000, boot_sample(df)),
prs_df = map(strap_sample,match)

) # bootstrap first

att_complex = NULL
for (i in 1:nrow(bootstrap_sample)) {

att_complex[i]= ATT(bootstrap_sample$prs_df[[i]])
}

# add estimated treatment effect to the boostrap samples
bootstrap_sample = cbind(bootstrap_sample,att_complex)

Compare the treatment e�ect and the standard error

# the treatment effect and the standard error by simple bootstrap
a = c(mean(bootstrap_sample_sim$att_sim),

sd(bootstrap_sample_sim$att_sim)) # mean, std
# the treatment effect and the standard error by complex bootstrap
b = c(mean(bootstrap_sample$att_complex),

sd(bootstrap_sample$att_complex)) # mean, std

results = rbind(a,b)
rownames(results) = c("simple bootstrap",

"complex bootstrap")
colnames(results) = c("mean", "sd")

results
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