
A study of optimization algorithms on a breast cancer diagnosis
dataset

Ruoyuan Qian rq2166, Yimeng Shang ys3298, Zongchao Liu zl2860

March 20, 2020

Introduction

Cancer detection based on typical clinical features is being increasingly critical to population health. It
is a desirable way to help clinicial practitioners enhance diagnosis accuracy and prevent faults. In this
report, we built several predictive models to facilitate cancer diagnosis. Our goal is to compare optimization
methods including the Newton-Raphson with classic logistic regression and pathwise coordinate-wise with
LASSO logistic regression. The two methods were compared based on the correct classification rate attained
through a 10-fold cross-validation process.

Method

Dataset

Our data set consists of 569 observations and 33 rows. The response of the following model is a binary
variable, diagnosis, in which M represents malignant tissues and B represents benign tissues. For analysis,
we recoded malignant as 1, benign as 0.

There are 30 potential predictors in the data set corresponding to mean, standard deviation and the largest
values (points on the tails) of the distributions of the features computed for the cell nuclei. For our analysis,
we used both the “full data” and a “subset” of the data. The subset of the data was attained by picking up
some of the predictors. In the subset data, the selected predictors were:

• radius_mean: mean of distances from center to points on the perimeter

• texture_mean: mean of gray-scale values

• perimeter_mean: mean size of the core tumor

• area_mean: mean area of the core tumor

• smoothness_mean: local variation in radius lengths

• compactness_mean: perimeter2 / area - 1.0

• concavity_mean: severity of concave portions of the contour

• concave_points_mean: average number of concave portions of the contour

• symmetry_mean: symmetry of the tumor

• radius_se: variation of distances from center to points on the perimeter

• perimeter_se: variation of the sizes of the core tumor

1

• symmetry_se: variation of symmetry

Before using the data, we standardized it by subtracting the mean and divided by the square root of sum of
the vector to make the norm of it equals to one. Moreover, to randomly divided the data into training and
testing data(for cross-validation), we used random() function from R to randomize the dataset.

Evaluation metric

For prediction ability, we chose the following criteria:

Correct classification rate, which is defined as:

correct classifcation rate = 1
n

∑n
i=1 |ŷi − yi|

Newton-Raphson model

Let y be the vector of n response random variable, X denote the n × p design matrix (Xi denote the ith
row) and β denote the p× 1 coefficient. Let η = E(y) = Xβ and given the link function as g(η) = log η

1−η ,
we have the logistic regression model written as:

log(η

1− η) = Xβ

The likelihood of this logistic regression is:

L(β) =
n∏
i=1

[(eX
T
i β

1 + eX
T
i
β

)yi(1
1 + eX

T
i
β

)1−yi]

Maximizing the likelihood is equivalent with maximizing the log likelihood

f(β) =
∑n
i=1(Yi(XT

i β)− log(1 + eX
T
i β))

The gradient is given by:

∇f(β) = XT (Y −P) , where X is design matrix, Y is a vector of yi, P is a vector and is equal to P = eX
T β

1+eXT β

Then we get the Hessian matrix:

∇2f(β) = −XTWX, where W is diagonal matrix and is equal to W = diag(p1(1− p1), p2(1− p2), ..., pn(1−
pn)), pi = e

XT
i
β

1+eX
T
i
β

From the correlation plot, it’s clearly that there are several highly correlated covariates. Before fitting the
logistic model, we firstly select some non-correlated predictors. We then used Newton-Raphson algorithm to
optimize the coefficients. The initial guess for Newton-Raphson we choose is that all coefficients equal to 1.
For each iteration, we guarantee that the hessian matrix is negative definite by checking it’s max eigenvalue
and furtherly we checked add a λ for each step to make sure that the likelihood is increasing at each step.
We defined convergence as when the difference between the current log-likelihood and the log-likelihood of
the last iteration reached below 10−3.

2

Logistic-LASSO model

If we Taylor expansion the log-likelihood around “current estimates”, we get a quadratic approximation to
the log-likelihood of logistic regression, which shows that logistic regression can be viewed as a weighted
linear regression:

f(β0, β1) ≈ l(β0, β1) = − 1
2n

n∑
i=1

ωi(zi − β0 − xTi β1)2 + C(β̃0, β̃1)

where we have the working response:

zi = β̃0 + xTi β̃1 + yi − p̃i(xi)
p̃i(xi)(1− p̃i(xi))

the working weights:
ωi = p̃i(xi)(1− p̃i(xi))

and the probability given the current parameters:

p̃i(xi) = eβ̃0+xTi β1

1 + eβ̃0+xT
i
β1

The coordinate descent algorithm to solve the penalized weighted least squares problem aiming to minimize
the objective function:

min
β∈Rp+1

{−f(β) + λP (β)}

3

To minimize the objective function, we apply coordinate descent algorithm, where the coefficients except
intercept term was penalized by tuning parameter λ times l1 norm. Each betak was optimized using the
following equation, where S() is the soft threshold of LASSO regression:

β̃lassoj (λ)←
S(

∑n
i=1 ωixi,j(zi − z̃i(−j)), λ)∑n

i=1 ωix
2
i,j

In order to choose a best penalty parameter λ, we conducted a range of λ and calculate the pathway of
solution. Using 5 fold cross validation, we can get the correct classification rate for each λ. The λ with
highest correct classification rate is the best λ we chose.

Model comparasion method

To compare the two models, we use cross validation from 1 to 10 folds to get the mean of correct classification
rate of each model. The one with higher correct classification rate is the better one.

Result

Logistics regression

The Newton-Raphson algorithm was used for updating parameters of the logistic regression model. The pa-
rameters obtained through Newton-Raphson algorithm are very close to what are estimated by implementing
the glm() function in the ‘stat’ package (Table 1). The slight difference in coefficients might be due to the
setting of convergence tolerance, iteration count and initial betas.

LASSO logistic regression

Coefficients

A pathwise coordinate-wise optimization algorithm was implemented to obtain a path of solutions with a
descending sequence of λ’s. The trace plots (Fig. 1, Fig. 2) of the LASSO logistic regression model show
that the variable estimates of parameters were penalized by λ. The estimates shrink to 0 accordingly when
λ increases. As a result of the penalty term λ, when it is extremely large, all the estimates of the parameters
will go to 0. The estimated parameters of LASSO logistic regression are shown in Table 1, compared with
classic logistic regression.

Figure 1 Trace plot of LASSO-logistic fit with all data

4

Figure 2 Trace plot of LASSO-logistic fit with 13 predictors

Lambda for lasso logistic regression

5

To select the best tuning parameter λ of the LASSO model, we conducted a 5-fold cross-validation under
the scenario of a total number of 1000 λ’s. For each λ, we calculated the average correct classification rate of
the test sets and selected the λ that corresponds to the highest correct classification rate as the final penalty
term. The resulting λ is 0.074. Fig. 3 shows the range of λ and its corresponding correct classification rate.

Figure 3 Correct classification rate across different lambda

Model comparison

Coefficient comparison

We compared these methods: classic logistic Regression via Newton-Raphson Algorithm, classic logistic
regression via R package (stats), LASSO logistic regression via pathwise coordinate-wise descent (CD) algo-
rithm and LASSO logistic regression via R package (glmnet). Table 1 shows all the estimates of parameters
within each method. We see that the estimated parameters of LASSO logistic regression via CD were differ-
ent from the parameters of the model fitted by R package. This might be because the R package does not
penalize the intercept but our CD method does. The LASSO model obtained through CD was simpler than
the model built by the R package.

6

Prediction performance comparison

We also compared the prediction performance on the “full data” and the “sub-data” by using 10 fold cross-
validation. The average correct classification rate (1 - misclassification rate) was used as the criterion of
performance. While we are building the models based on the subset of the data (with only 12 predictors
rather than 31), the average correct classification rate for the classic logistic model is 93.1%, lower than the
LASSO with 97.0% (Table 2). Since LASSO has been considered as an effective way for feature selection,
we also applied our LASSO model in the full data(with 31 predictors) to see if it did well in predicting among
excessive variables. Surprisingly, we found that the LASSO model built on the full dataset had a higher
prediction accuracy (93.8%) than the classic logistic regression model originally built on the sub-dataset
(Table 2). This implied that if we had not done a feature selection work before, the LASSO model would
be a more effective tool to help select the optimal combination of predictors.The result might also suggest
that the sub-dataset with the 12 predictors was not the best subset of variables for prediction.

7

Conclusion

In this report, logistic regression with Newton-Raphson optimization and LASSO via CD were conducted
to predict the outcome of breast cancer. A five-fold cross validation was used to select the best λ from a
sequence of λ’s by the highest correct classification rate. Then we compared the coefficient estimation for
logistic regression with Newton-Raphson optimization, logistic regression in R package, LASSO via CD and
LASSO from in R package. The coefficient estimates for two logistic regressions were similar while the model
of LASSO via CD was simpler than the LASSO model attained by the R package. As for comparison in
prediction performance, logistic regression based on subset and LASSO via CD based on subset and full data
were compared based on correct classification rate. LASSO with full data performed best.

Discussion

Randomization

The method of randomization we used to implement cross-validation is a little different from the traditional
way. The observations in dataset are randomized and are split into k folds based on its new order instead
of randomly sampling k folds from original dataset. Therefore, randomization is done as well in our method
but just in a different way.

8

k-folds cross validation

We change the number of folds k in cross validation to check the relation between k and mean correct
classification rate in different methods. It turns out that there is no trend between k and mean correct
classification rate, and the mean correct classification rate of LASSO is always higher than logistic regression
with modified Newton-Raphson optimization (Fig 4).

Figure 4 Correct classification rate across different number of folds

Prospect

The original dataset has 10 features with 3 measurements for each, which may result to high collinearity.
Unlike LASSO, logistic regression is unable to do variable selection, so we select predictors for it based on the
correlation matrix, more effort could be done to find a better way of variable selection for logistic regression.

9

Appendix - R code

################Content#####################
##
1. Functions preparation
2. Data manipulation
3. Call functions and solving problems
4. Code for the results and conclusion
##

1. Function preparation

normalization

normal = function(x){
for (i in 2:ncol(x)) {

x[,i] = ((x[,i] - mean(x[,i]))/sqrt(sum(x[,i]^2)))}
return(x)

}

Newton-Raphson

improved_NR = function(x, y, func, gradient, hessian, tol){
theta = matrix(rep(1, ncol(x)), nrow = ncol(x))
theta0 = theta
iter_count = 0
first_ite = TRUE
while (first_ite | abs(func(theta, x ,y) - func(theta0, x ,y)) > tol & iter_count < 6000) {

first_ite = FALSE
lambda = 1
f0 = func(theta, x ,y)
gamma = max(eigen(hessian(theta, x ,y))$values) # get the max eigenvalues of hessian
if (gamma < 0) { # if all eigenvalues < 0, it's finite definite

direc = solve(hessian(theta, x ,y)) %*% gradient(theta, x ,y)
}
else {#If there exists any eigenvalue > 0, it's not definite.

#We subtract the max eigenvalue plus 0.5 from all eigenvalue to make it finite definite
n = nrow(theta)
direc = solve(hessian(theta, x ,y) - (gamma + 0.5)*(diag(1,n,n))) %*% gradient(theta, x ,y)

}
theta_in = theta - lambda * direc
for (i in 1:10) {

if (func(theta_in, x ,y) < f0) {
labmda = lambda/2
theta_in = theta - lambda * direc

}
else{break}

}
theta0 = theta

10

theta = theta_in

iter_count = iter_count + 1
#result = paste(iter_count, theta)
#print(result)

if(iter_count %% 100 == 0) {
write.csv(theta, "/Users/yimeng/2020Spring/Computing/HW/Project2/proj2_sym")
}

}
#print(iter_count)
return(theta)

}

Computation of loglikelihood hessian

loglikelihood = function(theta, x ,y) {
eta = x %*% theta
h = exp(eta)
return(sum(y * eta - log(1 + h)))

}

gradlikelihood = function(theta, x, y) {
eta = x %*% theta
h = exp(eta)
p = h / (1 + h)
return(t(x) %*% (y - p))

}

hessianlog = function(theta, x, y) {
eta = x %*% theta
h = exp(eta)
p = h / (1 + h)

temp = t(x)
for (i in 1:nrow(temp)) {

temp[i,] = temp[i,] * p * (1 - p)
}
return(-temp %*% x)

}

Weighted related functions

weights_w = function(x, y, beta) {
p = exp(x %*% beta)/(1 + exp(x %*% beta))
#beta are coefficients
w = p * (1 - p)
return(w)

}

11

resp_z = function(x, y, beta){
p = exp(x %*% beta) / (1 + exp(x %*% beta))
z = x %*% beta + (y - p)/(p * (1 - p))
return(z)

}

LogLassoLoss = function(x, y, lambda, beta) {
z = resp_z(x, y, beta)
w = weights_w(x, y, beta)
log_lik = (1/(2*nrow(x)) * sum(w * (z - x %*% beta)^2)) #### - or + ???
return(log_lik)

}

soft_threshold = function(beta, lambda) {
if (beta > 0 & lambda < abs(beta)) {

return(beta - lambda)
}
else if (beta < 0 & lambda < abs(beta)) {

return(beta + lambda)
}
else {

return(0)
}

}

Logistic-Lasso functions

CoorWiseLasso = function(loss, lambda, x, y, tol=0.01) {
max_iter = 200
iter_count = 0

beta = as.matrix(rep(1, ncol(x)))
beta0 = beta

while (iter_count == 0 | iter_count < max_iter) {
iter_count = iter_count + 1
beta0 = beta
for (j in 1:ncol(x)) {

xbeta = x %*% beta
p = exp(xbeta)/(1 + exp(xbeta))
w = p * (1 - p)
wz = w * xbeta + y - p

numerator = sum(wz * x[,j] - w * x[,j] * (x[,-j] %*% as.matrix(beta[-j])))
denominator = (x[,j]^2 %*% w)
beta[j] = soft_threshold(numerator, lambda) / denominator

}
}
return(beta)

}

12

change lambda to get a dataframe
change_lambda = function(x, y, loss, tol, n) {

lambda_max = max(CoorWiseLasso(loss, lambda = 0, x, y, tol))
#lambda_max = 1
lambda = exp(seq(from = -8, to = 0, length.out = n))
#lambda = seq(from = lambda_max, to = 0, length.out = n)
df_total = data.frame()
for (i in 1:length(lambda)) {

beta = CoorWiseLasso(loss, lambda[i], x, y, tol)
result = data.frame(lambda[i], t(beta))
df_total = rbind(df_total, result)

}
return(df_total)

}

Cross-Validation

CV for select model
CV_model = function(k, data, pred_fun, tol, Newton = TRUE, lambda = 1) {

result = c()
split the data into k folds
cvSplits = list()
for (i in 0:(k - 2)) {

size = as.integer(nrow(data)/k)
cvSplits[[i + 1]] = data[(1 + i*size):(size + i*size),]

}
last_size = nrow(data) - size*(k - 1)
cvSplits[[k]] = data[(nrow(data) - last_size + 1):(nrow(data)),]

seperate train and test data
for (i in 1:k) {

test = data.frame()
train = data.frame()
test data
test = cvSplits[[i]]
test_x = test[, 2:ncol(test)]
test_y = test[, 1]
train data
for (j in 1:k) {

if (j != i) {
train = rbind(train, cvSplits[[j]])

}
}
train_x = train[, 2:ncol(train)]
train_y = train[, 1]
train_x = as.matrix(train_x)
train_y = as.matrix(train_y)
test_x = as.matrix(test_x)
test_y = as.matrix(test_y)

do regression

13

if (Newton) {

theta = improved_NR(train_x, train_y, loglikelihood, gradlikelihood, hessianlog, tol)
pred_y = pred_fun(test_x, theta)

} else {
theta = CoorWiseLasso (LogLassoLoss, lambda, train_x, train_y, tol)
pred_y = pred_fun(test_x, theta)

}

predictive ability measure
? do we use MSE or log loss function
ans = 1 - sum(abs(test_y - pred_y))/nrow(test_x)
result = c(result, ans)

}
return(result)

}

CV for select best lambda(n fold cv)
CV_lambda = function(k, data, pred_fun, lossfunc, tol, n) {

result = c()

y = data[,1]
x = data[,2:ncol(data)]

beta = as.matrix(rep(1, ncol(x)))
lambda_max = max(CoorWiseLasso(lossfunc, lambda = 1, x, y, tol))
lambda = seq(from = lambda_max, to = 0, length.out = n)

res_cv = c(rep(0,n))
for (lamda_index in 1:n) {

lambda_inuse = lambda[lamda_index]
ans = c(rep(0,k))

split the data into k folds
cvSplits = list()
for (i in 0:(k - 2)) {

size = as.integer(nrow(data)/k)
cvSplits[[i + 1]] = data[(1 + i*size):(size + i*size),]

}
last_size = nrow(data) - size*(k - 1)
cvSplits[[k]] = data[(nrow(data) - last_size + 1):(nrow(data)),]

seperate train and test data
for (i in 1:k) {

test = data.frame()
train = data.frame()
test data
test = cvSplits[[i]]
test_x = test[, 2:ncol(test)]
test_y = test[, 1]

14

train data
for (j in 1:k) {

if (j != i) {
train = rbind(train, cvSplits[[j]])

}
}
train_x = train[, 2:ncol(train)]
train_y = train[, 1]
train_x = as.matrix(train_x)
train_y = as.matrix(train_y)
test_x = as.matrix(test_x)
test_y = as.matrix(test_y)

theta_inuse = CoorWiseLasso(lossfunc, lambda_inuse, train_x, train_y, tol)
pred_y = pred_fun(test_x, theta_inuse)
ans[i] = 1 - sum(abs(test_y - pred_y))/nrow(test_x)

}
res_cv[lamda_index] = mean(ans)

}
print(res_cv)
max_index = which.max(res_cv)
best_lambda = lambda[max_index]
return(data.frame(acc = res_cv,

lambda = lambda))
}

Prediction

predict = function(x, theta) {
eta = x %*% theta
h = exp(eta)
p = h/(1 + h)

change p to 0/1
for (i in 1:length(p)) {
if (p[i] > 0.5) {

p[i] = 1

} else {
p[i] = 0

}
}

return(p)
}

2. Data manipulation

data = read_csv("breast-cancer.csv") %>%
janitor::clean_names() %>% select(-x33)

15

random data
set.seed(1)
randOrder = sample(1:nrow(data))
data_ramdom = data[randOrder,]

use all data to get designed marix
x_all = data_ramdom %>%

#select(radius_mean:symmetry_mean, radius_se, perimeter_se, symmetry_se) %>%
select(-id, -diagnosis) %>%
mutate(intercept = 1) %>% select(intercept, everything()) # add intercept vector 1s

x_all = as.matrix(x_all)

normalization data
x_all = normal(x_all)

recode y as 0,1
y_all = data_ramdom %>% mutate(diagnosis = recode(diagnosis, "B" = "0", "M" = "1")) %>%

mutate(diagnosis = as.numeric(diagnosis)) %>% select(diagnosis)
y_all = as.matrix(y_all)

data_all = cbind(y_all, x_all)

select main predictors
x_selected = data_ramdom %>%

select(radius_mean:symmetry_mean, radius_se, perimeter_se, symmetry_se) %>%
mutate(intercept = 1) %>% select(intercept, everything()) # add intercept vector 1s

x_selected = as.matrix(x_selected)

normalization data
x_selected = normal(x_selected)

recode y as 0,1
y_selected = data_ramdom %>% mutate(diagnosis = recode(diagnosis, "B" = "0", "M" = "1")) %>%

mutate(diagnosis = as.numeric(diagnosis)) %>% select(diagnosis)
y_selected = as.matrix(y_selected)

data_selected = cbind(y_selected,x_selected)

3. Call functions and solving problems

Problem 1+2

tol = 0.001

Newton
theta = improved_NR(x_selected, y_selected, loglikelihood, gradlikelihood, hessianlog, tol)
result = predict(x_selected, theta)

1 - sum(abs(y_selected - result))/nrow(x_selected)

16

Problem 3

pathway = change_lambda(x_selected, y_selected, LogLassoLoss, tol = 0.001, 30) %>%
mutate(log_lambda = log(lambda.i.)) %>% select(-lambda.i.)

pathway_colnames = c(colnames(x_selected),"log_lambda")
colnames(pathway) = pathway_colnames

pathway =
pathway %>%
pivot_longer(
1:13,
names_to = "beta",
values_to = "value")

trace plot
ggplot(pathway, aes(x = log_lambda, y = value)) +

#geom_point(aes(color = beta)) +
#geom_point(aes(color = beta)) +
geom_line(aes(color = beta)) +
theme_bw() +
labs(title = "Trace Plot of the Lasso-logistic Fit (with 13 predictors)") +
theme(plot.title = element_text(hjust = .5))

In detail
ggplot(pathway, aes(x = lambda.i., y = value)) +
#geom_point(aes(color = beta)) +
geom_line(aes(color = beta)) +
xlim(0, 0.15)

Problem 4

CV for selecting best lambda

#best_lambda = CV_lambda(k = 5, data_all, predict, LogLassoLoss, tol, n = 1000)
#best_lambda
#best lambda = 0.074

CoorWiseLasso(LogLassoLoss,x = x_all ,y = y_all, lambda = 0.074)# best lambda is 0.074
CoorWiseLasso(LogLassoLoss,x = x_selected ,y = y_selected, lambda = 0.074)

library(glmnet)
fit.glmnet = cv.glmnet(scale(x_all[,-1], scale = T), y = y_all, family = "binomial", alpha = 1, standardize = F)
fit.glmnet$lambda.min
fit.lasso = glmnet(scale(x_all[,-1], scale = T), y = y_all, family = "binomial", alpha = 1,lambda = fit.glmnet$lambda.min, standardize = F)
coef(fit.lasso)

fit.glmnet = cv.glmnet(x_all[,-1], y = y_all, family = "binomial", alpha = 1, standardize = F)
fit.glmnet$lambda.min

17

fit.lasso = glmnet(x_all[,-1], y = y_all, family = "binomial", alpha = 1,lambda = fit.glmnet$lambda.min, standardize = F)
coef(fit.lasso)

CV for comparing two models

k = seq(from = 2, to = 50)

res_nt = rep(0,length(k))
res_lasso = rep(0,length(k))
for (i in 1:length(k)) {

res_nt[i] = mean(CV_model(k = k[i], data_selected, predict, tol, Newton = RUE, #lambda = 1))
res_lasso[i] = mean(CV_model(k = k[i], data_all, predict, tol, Newton = ALSE, #lambda = best_lambda))

}

res_lasso
res_nt

diff = res_lasso - res_nt
diff_k = data.frame(k,diff)
ggplot(diff_k) + geom_line(aes(x = k, y = diff)) + ggtitle("Lasso minus ewton #Raphson")

cv_res = data.frame(k, res_lasso, res_nt) %>% pivot_longer(
res_lasso:res_nt,
names_to = "method",
values_to = "rate"

)

ggplot(cv_res) + geom_line(aes(x = k, y = rate, color = method)) + ggtitle("correct #classification rate")

4. Code for the results and conclusion

The following chunks are for the results. Functions are somewhat modified.

CV for select best lambda(n fold cv)
CV_lambda = function(k, data, pred_fun, lossfunc, tol, n) {

result = c()

y = data[,1]
x = data[,2:ncol(data)]

beta = as.matrix(rep(1, ncol(x)))
lambda_max = max(CoorWiseLasso(lossfunc, lambda = 1, x, y, tol))
lambda = seq(from = 15, to = 0, length.out = n)

res_cv = c(rep(0,n))
for (lamda_index in 1:n) {

lambda_inuse = lambda[lamda_index]
ans = c(rep(0,k))

split the data into k folds
cvSplits = list()

18

for (i in 0:(k - 2)) {
size = as.integer(nrow(data)/k)
cvSplits[[i + 1]] = data[(1 + i*size):(size + i*size),]

}
last_size = nrow(data) - size*(k - 1)
cvSplits[[k]] = data[(nrow(data) - last_size + 1):(nrow(data)),]

seperate train and test data
for (i in 1:k) {

test = data.frame()
train = data.frame()
test data
test = cvSplits[[i]]
test_x = test[, 2:ncol(test)]
test_y = test[, 1]
train data
for (j in 1:k) {

if (j != i) {
train = rbind(train, cvSplits[[j]])

}
}
train_x = train[, 2:ncol(train)]
train_y = train[, 1]
train_x = as.matrix(train_x)
train_y = as.matrix(train_y)
test_x = as.matrix(test_x)
test_y = as.matrix(test_y)

theta_inuse = CoorWiseLasso(lossfunc, lambda_inuse, train_x, train_y, tol)
pred_y = pred_fun(test_x, theta_inuse)
ans[i] = 1 - sum(abs(test_y - pred_y))/nrow(test_x)

}
res_cv[lamda_index] = mean(ans)

}
#print(res_cv)
max_index = which.max(res_cv)
best_lambda = lambda[max_index]
return(data.frame(acc = res_cv,

lambda = lambda))
}

For plotting the cross-validation process of lambdas
acc_lambda = CV_lambda(k = 5, data_all, predict, LogLassoLoss, tol, n = 1000)
acc_lambda %>%

ggplot(aes(x = lambda, y = acc)) +
geom_point(size = 0.2) +
geom_line(size = 0.4) +
theme_bw() +
labs(title = "Accuracy v.s. Lambda under 5 fold cross-validation") +
theme(plot.title = element_text(hjust =.5))

19

The following chunks are for the results.

mean(CV_model(k = 10, data_selected, predict, tol, Newton = TRUE, lambda = 1))
mean(CV_model(k = 10, data_all, predict, tol, Newton = FALSE, lambda = 0.074))
mean(CV_model(k = 10, data_selected, predict, tol, Newton = FALSE, lambda = 0.074))

20

	Introduction
	Method
	Dataset
	Evaluation metric
	Newton-Raphson model
	Logistic-LASSO model

	Model comparasion method
	Result
	Logistics regression
	LASSO logistic regression
	Model comparison

	Conclusion
	Discussion
	Randomization
	k-folds cross validation
	Prospect

	Appendix - R code
	1. Function preparation
	normalization
	Newton-Raphson
	Computation of loglikelihood hessian
	Weighted related functions
	Logistic-Lasso functions
	Cross-Validation
	Prediction

	2. Data manipulation
	3. Call functions and solving problems
	Problem 1+2
	Problem 3
	Problem 4

	4. Code for the results and conclusion
	The following chunks are for the results. Functions are somewhat modified.
	The following chunks are for the results.

