
Report on Daily COVID-19 Case Number
Analysis
Yuanzhi Yu, Zongchao Liu, Sitong Cui, Mengyu Zhang

1. Introduction
The coronavirus pandemic has impacted daily life globally. Using the daily confirmed cases data, we are interested in building a
logistic curve model which provides information regards maximum number of cases of a region, the growth rate and the
midpoint. In the COVID-19 case, this maximum limit would be the maximum number of cases a region can reach. The more
people who have the virus, the more rapidly it spreads, and the growth will necessarily diminish when everybody is sick, which
make the logistic model a good one to study the spread. With the non-parametric model, we are further interested in finding
clusters of fitted curves. This may help us better understand the infection. For instance, whether location or resources of a
region or starting time affects spread of the virus more?

2. Method
2.1 Dataset
In this project, we use two sets of data to fit the logistic curves. The first dataset includes cumulative COVID-19 cases from Jan
21 to March 23 in different regions where cases have been confirmed. The second dataset contains similar data points of
cumulative cases in the regions from Jan 21 to Apr 27. Both of the datasets were derived by reorganizing the original data
sources from https://github.com/CSSEGISandData/COVID-19 (https://github.com/CSSEGISandData/COVID-19). By
implementing optimization algorithms on the data of a specific region, we obtain the parameters of the logistic curve for that
region.

2.2 Logistic Curve Model
The function for logisitc curves can be defined as

where t is the days since the first infection; K is the upper bound; b is growth rate, and c is the mid-point.

With log-transformation, we get

where is the number of cases at t, , .

For developing logistic curve model for each country data we apply the following two steps:

Step 1: estimate the upper bound

Step 2: fit logistic curve using gradient descent optimization algorithm

2.2.1 Upper Bound Estimation
Generally, K is estimated by solving a system of equations

f(t) = ,
K

1 + exp{−b(t − c)}
(2.1)

log() = a − rt,
K − N

N
(2.2)

Nt a = bc r = b

https://github.com/CSSEGISandData/COVID-19

, and are the starting point, midpoint and final point in a time sires data respectively. Consequently,
we get the formula for K

However, could be negtive when is same as or close to , so we also use the properties of gradient at midpoint to
estimate K.

When , , so we get a estimated midpoint by

Therefore, estimated K would be

2.2.2 Optimization
Based on this linear relationship between t and cases in formula (2.2), the loss function that we want to minimize can be defined
as

where is estimated upper bound in formula (2.4). The gradient is

Parameters update based on

where is step length.

The gradient descent optimization algorithm’s steps are

Step 1: set starting value , tolerance , and .

Step 2: , quit and solution is . Otherwise, to step 3.

Step 3: new estimates is updated by formula (2.8), and i = i+1. Turn to step 2.

2.3 Clustering
2.3.1 Guassian Mixture Model (with EM algorithm)

log
K − N1

N1

log
K − N2

N2

log
K − N3

N3

= a − rt1

= a − rt2

= a − rt3

(2.3)

(,)t1 N1 (,)t2 N2 (,)t3 N3

= , 2 = +K̂
2 − (+)N1N2N3 N 2

2 N1 N3

−N1N3 N 2
2

t2 t1 t3 (2.4)

K̂ N2 N1

Δt → 0 ≈dN

dt

ΔN

Δt
(,)tm N̂m

max(, , . . . ,) .
−N2 N1

−t2 t1

−N3 N2

−t3 t2

−Nn Nn−1

−tn tn−1
(2.5)

= 2K̂ N̂m

L(t; , ,)â r̂ K̂ = ||y − + t|
1
2

â r̂ |2

= || log() − + t| ,
1
2

−K̂ Nt

Nt

â r̂ |2
(2.6)

K̂

∇L(t; ,) = ()â r̂
− (− +)∑n

i=1 yi â r̂ti

(− +)∑n
i=1 ti yi â r̂ti

(2.7)

(, = (, − α∇L(t; ,)âi r̂ i)
T âi−1 r̂ i−1)T âi−1 r̂ i−1 (2.8)

α

(a, r)(0) ϵ i = 1 α = 1

L(t; ,) − L(t; ,) ≤ ϵai ri ai−1 ri−1 (a, r)(i)

α = α/2

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a
cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory
data mining, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image
analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. The probability
model-based approach contains Gussian Mixture Method, which assumes that the dataset follows a gussian mixture mixture
distributions. (?)

Given that is a collection of dimensional data points. Assuming the following equation:

And,

Let be the cluster indicator of , which takes form with
. The cluster indicator is a latent variable that cannot be observed. What is complete

likelihood of . ???

The distribution of follows

The complete log-likelihood is

Evaluate the responsibilities parameter values we got from task 1:

E-step

M-step

.

Setting , we can compute:

2.3.2 K-means

{ , , . . . , } ∈x1 x2 xn R
p p

∼xi

⎧

⎩
⎨
⎪⎪⎪

⎪⎪⎪

N(,), with probability μ1 Σ1 p1

N(,), with probability μ2 Σ2 p2

⋮ , ⋮
N(,), with probability μk Σk pk

= 1∑
j=1

k

pj

= (, . . . ,) ∈ri ri,1 ri,k R
k

xi (0, 0, . . . , 0, 1, 0, 0)
= I{ belongs to cluster j}ri,j xi ri

(,)xi ri

ri

f() =ri ∏
j=1

k

p
,jri

j

ℓ(θ; x, r) = [log + log f(; ,)] = [log − 1/2 log |Σ| − 1/2(− Σ(−)]∑
i=1

n

∑
j=1

k

ri,j pi xi μj Σj ∑
i=1

n

∑
j=1

k

ri,j pi xi μj)
⊤

xi μj

= P (= 1| ,) =γ
(t)
i,k ri,k xi θ(t)

f(| ,)p
(t)
k xi μ

(t)
k Σ(t)

k

f(| ,)∑K
j=1 xi μ

(t)
j Σ(t)

j

= arg max ℓ(x, , θ)θ(t+1) γ(t)

=nk ∑n
i=1 γi,k

=μ
(t+1)
k

1
nk

∑
i=1

n

γi,kxi

= (−)(−Σ(t+1)
k

1
nk

∑
i=1

n

γi,k xi μ
(t+1)
k xi μ

(t+1)
k)T

=p
(t+1)
k

nk

n

K-means is a special case for Gussian Mixture, where it is not required to consider small variances or the limit case of zero
variances. The -means algorithm partitions data into clusters. In this project, we set as the centers of
the (unknown) clusters, and denote as the ``hard’’ cluster assignment of . -means finds
cluster centers and cluster assignments that minimize the objective function.

3. Results
Obtainded parameters
For most of the regions in the first dataset, since they do not reach the mid-point, the upper bound estimates might be severely
biased, resulting in a bad fitted curve. To confirm whether logistic curve is suitable for modeling the spread, we also take the
second dataset into account. We finally obtained two sets of parameters(Parameters_1 for the first dataset and Parameters_2
for the second) of the model by implementing optimization algorithms on both the first and second dataset(Figure 1). The
parameters were scaled by taking a natural log. The obtained parameters were then used for clustering later.

Figure 1 Parameters for 144 regions

Results from Parameters_1
Initially, we use the first dataset(including cases from Jan 21 to Mar 23) to fit the curves and the second dataset(including cases
from Jan 21 to APR 27) to check the predictive ability of the curves. For the first dataset, we assume that whether mid-point
occurs or not is closely related to the performance of the curve.

K k { , , . . . , }μ1 μ2 μk

k = (, . . . ,) ∈ri ri,1 ri,k R
k

xi k

J(r, μ) = ∥ −∑
i=1

n

∑
j=1

k

ri,j xi μk∥2

It has been reported that during the early stage of January and Febulary in 2020, there were not many countries(regions)
showing a trend that the virus began spreading. In these regions, the number of cases is almost stationary at the beginning and
starts increasing 10 or more days after the first case has been confirmed. Obviously, these regions have not reached the mid-
point of the spreading. This situation might bring a problem to analysis: The trend for some of the data points for fitting curves
are flattened, resulting in a strong bias of upper bound estimates. Figure 2 shows a series of regions that have the situation
mendtioned above. The vertical line in Figure 2 indicates the cut-off point of dates. We used the points in the left side of the
vertical line to fit the curves and the points in the right side to see if the curves predict the future effectively.

Figure 2 Regions not reaching mid-point

By checking the data, we found that only China has reached the mid-point within the period given in the first dataset,
approching the end of spread. This suggests that the curves for a region will be a perfect fit when that region has reached the
mid-point, as shown by the fitted curve for China(Figure 3):

Figure 3 Cumulative Cases in China

There are also some other regions that have extremely irregular cases distribution during the given time point. Figure 4 shows
the examples of such regions. The number of cumulative cases dropped in these regions, which should be impossible. There
may be some reasons related to the data collection process.

Under this situation, logistic curve might or might not be an effective good choice for future prediction. While a bad fit to the
training set might be due to inadequate data or other reasons, a relatively good training fit might not ensure a correct prediction
for the future cases.

Figure 4 Regions with irregular cases distribution

By analyzing the growth rates estimated from the first dataset, we found that the top 8 regions with the highest growth rate are
Uzbekistan, Turkey, Montenegro, Togo, Venezuela, Andorra, Mauritius, Holy See. However, as mentioned above, these
estimates were highly likely obatined based on a biased upper bound. A more credible growth rates estimation would be based
on the second dataset because the many regions in this dataset reached the mid-point. The top 8 regions with the highest
growth rate then become Martinique, Montenegro, Turkey, Uzbekistan, Djibouti, US, Russia, Brazil(Figure 5).

Figure 5 Top 8 growth rates

Results from Parameters_2
By using the second dataset for analysis, we mainly focus on answering if the logistic curve is a reasonable model for fitting the
curmulative cases and predicting future new cases. Figure 6 shows the curves fitted for the regions in Figure 1 but from the
second dataset. Obviously, the curves fit better as these regions all reached mid-point in the second dataset. This may imply the
spread follows a logistic curve. However, based on the results from the two sets of parameters, we may conclude that the

performance of the logistic curve heavily depends on the estimation of upper bound. Although several methods have been
posted for estimating upper bound, it is still difficult to get the correct answer if the true mid-point does not occur in the data. The
occurrence of mid-point is closely related to many other aspects such as policies and population health status.

Figure 6 Curves fitted with the full data

Results from clustering
We determined the optimum number of cluster to be 2. There are three methods to choose the number of clusters: The Elbow
Method, The Silhouette Method and Gap Statistic Method. In this project, we used Silhouette Method and Gap Statistic Method.
Both methods gave an optimum number of 2 for k-means and GMM for parameters regressed from Jan 22 to Mar 24.

2 clusters were tested using k-means and Gaussian mixture algorithm. When using kmeans, 6 countries belonged to cluster
one while 138 belonged to cluster two. With Gaussian mixture, the ratio between number of countries in a cluster is 30:114. The
6 countries in cluster one from k-means are included in the 30 countries in cluster one from GMM. From the graph below, we
proposed that cluster one in both algorithms correspond to curves with relatively faster spreading speed or with higher upper
bound.

Figure 7 Clusters shown in Growth Curves

We calculated MSE for cluster models. The MSE is for K-means and for GMM. For COVID-19 data from
Jan 22 to Mar 24, we preferred using K-means for clustering.

4. Discussion
K-means minimize the distance between sample and the central points in k number of clusters by assigning central points first
and optimize them by calculating the distance to them. The clusters in k-means are assumed to be spherical which does not
perform well with non-linear data. Instead of hard assignment used in k-means, Gaussian mixture methods adopt probability to
determine group membership. The clusters in GMM can take any shape. In this project, we preferred using K-means which
probably was due to the high-dimentionality of the data. In addition, other than MSE, we should also consider using BIC to
compare the models. BIC offers panelization for complexity.

The clustering is unlikely to be associated with starting time of infection or geographical location. The countries in the cluster
that has relatively faster spreading speed range all over the continents with different staring time from late January to early
March. On the other hand, these countries are relatively economically advanced with larger population. Crowding may increase
the virus speading and those countries are more likely to afford testing and recording confirmed cases. Thus a faster spreading
curve can be observed in these countries.

5. Conclusion
The simple logistic curve model gave a rough fit of the data with biased upper bound estimate. With more data, we can observe
that many countries are reaching the mid-point. We used both k-means and Gaussian mixture model to cluster the data. We
found that cluster number of 2 was the optimum and clusters were more likely associated with countries’ resources.

Code

5.2 ∗ 106 6.8 ∗ 106

Task 1: Data Cleaning and Optimization
1.1 Import & Clean data

data = read_csv("./covid19-1.csv") %>% janitor::clean_names()

#skimr::skim(data)

#All regions that have cases

data_havecases = data %>%

 group_by(country_region) %>%

 summarise(n_cases = max(confirmed_cases)) %>% #confirmed_cases = cumulative cases

 filter(n_cases != 0)

country = unique(data_havecases$country_region) # select all regions having cases

#regorganize the date variable, for optimization section

data = data %>%

 mutate(date = str_c(date,"20"),

 date = as.Date.character(date,

 format = "%m/%d/%Y")) %>%

 filter(country_region %in% country) #exclude regions that have no case

###

define a function that returns a list, containing the information of a specific region needed for optimizati

on

date_to_day = function(df,country_name){

 df_country = df %>%

 filter(country_region == country_name) %>% #select this region

 group_by(date) %>%

 summarise(cases = sum(confirmed_cases)) %>% # calculate cumulative cases

 arrange(date) #arrange by date

 start_day = which(df_country$cases!=0)[1] # first row that the first case occurs

 start_date = df_country$date[start_day] # first date

 df_country = df_country[start_day:nrow(df_country),] %>%

 mutate(days_since_spread = c(1:nrow(.))) # create days since spread, numeric var

 return(list(start_date = start_date,

 df_country = df_country,

 country.name = country_name))

} # returns spread date & cases from that date & region's name（use df_country as the data to optimize）

example for extracting a region's information

#t = date_to_day(data,"Portugal")

#t$start_date

#t$df_country

#t$country.name

print 10 regions data

#for (region in country[1:10]) {

res = date_to_day(data,region)

print(res$df_country)

#}

simple plot

#plot(t$df_country$days_since_spread,t$df_country$cases)

##

1.2 preparation for optimization

define prerequsite functions for optimization

##

log.curve

#define a general logistic growth curve

log.curve = function(para,t){

 a = para[1]

 b = para[2]

 c = para[3]

 return(a/(1+exp(-b*(t - c))))

}

define a function for calculating delta(difference of cases b/w T_i T_i+1)

delta = function(x){

 r = NULL

 for (i in 2:length(x)) {

 r[i-1] = x[i] - x[i-1]

 }

 return(r)

}

define a function to check delta: if the original data contains 4 or more days of # of cases not increasing,

then it returns true.

check_delta = function(delta){

 if(sum(min(delta[1:3])) == 0){

 return(TRUE) #as.integer((2/5)*length(delta))

 }else{

 return(FALSE)

 }

}

#Tranformation: a <= k, bc <= a, b <= r(abc on left hand side correspond to the formula given by the project i

nstruction)

#To estimate K firstly, when the original data contains many days of # of cases not increasing, we use 3-point

method, otherwise use the turning-point method.

k.estimate = function(df){ # para = c(k,a,r)

 cases = df$cases

 n1 = cases[1]

 n2 = cases[as.integer(median(1:length(cases)))] #2 * t2 = t3?

 n3 = cases[length(cases)]

 #print(c(n1,n2,n3))

 delta = delta(cases)

 #print(delta)

 if(check_delta(delta) == FALSE & ((2*n1*n2*n3)-n2^2*(n1+n3))/(n1*n3-n2^2) > 0){

 return(((2*n1*n2*n3)-n2^2*(n1+n3))/(n1*n3-n2^2))

 }

 #vec = NULL

 ##if(n3 == max(cases)){return(2*n3)}

 ##else{

 #for (i in 2:length(cases)) {

 # vec[i-1] = cases[i] - cases[i-1]

 #}

 if(cases[which.max(delta)+1] != max(cases) && abs(cases[which.max(delta)+1] - max(cases)) > (1/7) * cases

[which.max(delta)+1]){

 return(2*max(cases))

 }else{

 return(2*cases[which.max(delta)+1])

 }#+2??

 }

#define a function for calculating y based on estimated k

y.real = function(df){

 N = df$cases

 k = rep(k.estimate(df), length(N))

 for (i in 1:length(k)) {

 if (k[i] == N[i]) {

 k[i] = k[i] + 0.5

 }

 }

 trans = (k - N)/N

 y.real = NULL

 for (each in trans) {

 if (each > 0){

 each = log(each)

 y.real = append(y.real,each)

 }else{

 each = 1/2 * log(each^2)

 y.real = append(y.real,each)

 }

 }

 return(y.real)

}

#define a function for calculating y.hat

y.hat = function(df,para){ # c(a,r)

 a = para[1]

 r = para[2]

 t = df$days_since_spread

 return(a - r*t)

}

loss function

loss = function(y.real,y.hat,para){

 return((1/length(y.real)) * sum((y.real - y.hat)^2))

}

gradient

gradient = function(para,y.real,y.hat){ #para = c(a,r)

 grad_a = (-2/length(y.real)) * sum(y.real - y.hat)

 grad_r = (-2/length(y.real)) * sum((y.real - y.hat)*-c(1:length(y.real))) # pass

 return(c(grad_a,grad_r)) # return gradients

}

#define a function to check data: see if the original data contains many days of # of cases not increasing

check_df = function(df){

 if(sum(df$cases == min(df$cases))>=10|sum(df$cases == min(df$cases)+1)>=10|sum(df$cases == min(df$cases)+2)

>= 10){

 return(TRUE) #垃圾数据，需要裁剪

 }else{

 return(FALSE)

 }

}

define a function to check the data distribution first and then determine whether the data should be sliced

 before the data is used for optimization.

df.modifier = function(df){

 if(check_df(df) == TRUE){

 if(sum(df$cases == min(df$cases))>=10){

 s = sum(df$cases == min(df$cases))

 slicing_index = s - 3

 df = df %>% .[-c(1:slicing_index),] %>% mutate(days_since_spread = 1:nrow(.))

 #change days

 return(df)

 }else{

 return(df)

 }

 #if(sum(df$cases == min(df$cases)+1)>=10){s = sum(df$cases == min(df$cases))+1}

 #if(sum(df$cases == min(df$cases)+2)>=10){s = sum(df$cases == min(df$cases))+2}

 }else{

 return(df)

 }

}

1.3 Optimization

#An optimizer for a,r; using gradient descent; return a,b,c,loss,iter

optimizer = function(para, df, tol = 1e-10, maxiter = 20000){

 k = k.estimate(df)

 y.real = y.real(df)

 y.hat = y.hat(df,para)

 loss_prev = -Inf

 loss_cur = loss(y.real,y.hat,para) # loss

 para_cur = para

 iter = 1

 res = data.frame(a = para_cur[1], r = para_cur[2], loss = loss_cur,iter = iter)

 while (abs(loss_cur - loss_prev) > tol && iter < maxiter) {

 iter = iter + 1

 #print(iter)

 step = 1

 #print(para_cur)

 loss_prev = loss_cur

 para_prev = para_cur

 grad = gradient(para_prev, y.real = y.real, y.hat = y.hat)

 #print(grad)

 para_cur = para_prev - step * grad # update parameters

 #print(para_cur)

 y.hat = y.hat(df,para_cur) #new y.hat

 #print(y.hat)

 loss_cur = loss(y.real = y.real, y.hat = y.hat,para_cur)#new loss

 #print(paste("loss_cur > loss_pre:", loss_cur > loss_prev))

 #print(loss_cur)

 while (loss_cur > loss_prev) {

 step = 0.5 * step

 para_cur = para_prev - step * grad

 y.hat = y.hat(df,para_cur)

 loss_cur = loss(y.real = y.real, y.hat = y.hat,para_cur)

 }

 res_tmp = data.frame(a = para_cur[1], r = para_cur[2], loss = loss_cur,iter = iter)

 res = rbind(res,res_tmp)

 }

 res = res %>% mutate(k = k,b = r,c = a/r) %>% select(loss,k,b,c,iter) %>% rename("a" = "k")

 return(res)

}

##

1.4 get data & parameters

obtain parameters

##

##obtain parameters for a specific region

country #all available regions

obtain_para = function(country){

 t = date_to_day(data,country)

 df = df.modifier(t$df_country)

 para = c(1,4) # initial values for a,r

 para.data = optimizer(para,df)

 para.final = para.data[nrow(para.data),c(2:4)] %>% as.numeric() #final result

 pred = log.curve(para = para.final, t = 1:nrow(df))

 return(list(para = para.final, pred = pred, time = 1:nrow(df), turncated.df = df))

}

##

#importing data after 3.23

path = './csse_covid_19_data/csse_covid_19_daily_reports'

files.csv = list.files(path)

files.csv = files.csv[63:length(files.csv)-1]

read.data = function(file_list){

 data = data.frame()

 for (file in file_list){

 #print(str_sub(file,end = 5))

 df = read_csv(str_c(path,"/",file)) %>% dplyr::select(Country_Region,Province_State,Confirmed) %>% mutate

(date = str_sub(file,end = 5))

 data = rbind(data,df)

 }

 return(data)

}

#uniform the data format

datanew = read.data(files.csv) %>% mutate(date = str_c("2020-",date),

 date = as.Date(date)) %>%

 rename("Confirmed_cases" = "Confirmed") %>% janitor::clean_names() %>%

 mutate(usage = "predict")

#list with 144 regions

country = data.parameters$country

calculate cumulative cases

datanew = datanew %>%

 filter(country_region %in% country)

import old data

dataold = read_csv('./dataold.csv') %>%

 mutate(usage = "fitted") %>%

 select(names(datanew))

combine new and old data, dont need to save(already included in the branch)

data.combined = rbind(dataold,datanew)

#write.csv(data.combined,"data.combined.csv")

1.5 obtain all parameters

(a,b,c) for all countries

para.all = function(country){

 para.all = data.frame()

 for (country.each in country) {

 a = obtain_para(country.each)$para[1]

 b = obtain_para(country.each)$para[2]

 c = obtain_para(country.each)$para[3]

 country.name = country.each

 para.all = rbind(para.all, data.frame(a = a, b = b, c = c, country = country.name))

 print(paste(country.each," done!"))

 }

 return(para.all)

}

##############fit model with data before 3.23##

#df = date_to_day(data,"Saint Vincent and the Grenadines")$df_country

#df$cases

#df = df.modifier(df)

#k.estimate(df)

country = country[-113] #"Saint Vincent and the Grenadines" deleted(all 1's)

parameters = para.all(country)

#write.csv(parameters,"./parameters_0428_old.csv")

###############fit model with data after 3.23###

##dont clear working space

data = read_csv("./data.combined.csv") # import new data

country = country[-113] #"Saint Vincent and the Grenadines" deleted(all 1's)

parameters = para.all(country)

#write.csv(parameters,"./parameters_0428_new.csv")

#############fit model with data after 3.23##

Task 2: Clustering
read in parameters

res = read.csv("parameters.csv") %>%

 dplyr::select(-X) %>%

 mutate(

 a = round(a,0),

 b = round(b,3),

 c = round(c,0)

)

region_index = as.character(unique(res$country))

df_list = vector("list", length = length(region_index))

all_t=NULL

for(c in 1:length(df_list))

all_t = rbind(all_t, df_list[[c]][nrow(df_list[[c]]), 3])

sum((res[,3])<all_t[,1]) # total country pass the mid point

names = res[which((res[,3]) < all_t[,1]), 4]# names of those country

Gaussian Mixture using EM algorithm

data = covid_test, cluster_n = cluster number

EM = function(data, cluster_n){

 data = as.matrix(data) %>% scale()

 n = nrow(data)

 q = ncol(data)

 p_j = rep(1/cluster_n, cluster_n)

 mu = data[sample(n, cluster_n),] %>% as.matrix()

 covmat = diag(ncol(data))

 covlist = list()

 for(i in 1:cluster_n){

 covlist[[i]] = covmat

 }

count = 1

while(count < 100){

 mu_new = mu

 # E-step: Evaluate posterior probability, set as gamma

 gamma = c()

 for(j in 1:cluster_n){

 gamma2 = apply(data,1, dmvnorm, mean = mu[j,], sigma = covlist[[j]])

 gamma = cbind(gamma, gamma2)

 }

 # M- step: Calculate mu

 tempmat = matrix(rep(p_j, n), nrow = n,byrow = T)

 r = (gamma * tempmat) / rowSums(gamma * tempmat)

 mu = t(r) %*% data / colSums(r)

 # M- step: Calculate Sigma and p

 for(j in 1:cluster_n){

 sigma = matrix(rep(0, q^2), ncol = q)

 for(i in 1:n){

 sigma = sigma + r[i,j] * (data[i,] - mu_new[j,]) %*% t(data[i,] - mu_new[j,])

 }

 covlist[[j]] = sigma/sum(r[,j])

 }

 p_j = colSums(r)/n

 count = count + 1

 }

 cluster = which(r == apply(r, 1, max), arr.ind = T)

 cluster = cluster[order(cluster[, 1]),]

 # return mu, covlist, p and cluster

 return(list(mu = mu,

 covlist = covlist,

 p_j = p_j,

 cluster = cluster))

}

em_dat = res %>%

 dplyr::select(-country)

res for dat

set.seed(666)

res2 = EM(em_dat,2)

res3 = res2$mu %>%

 as.data.frame()

res3

clusters

set.seed(666)

clusters = kmeans(em_dat, 2)

clusternumbers = as.factor(clusters$cluster)

est_mean

a_mean = mean(res$a)

a_sd = sd(res$a)

b_mean = mean(res$b)

b_sd = sd(res$b)

c_mean = mean(res$c)

c_sd = sd(res$c)

em_mean = res3 %>%

 mutate(

 a = a*a_sd+a_mean,

 b = b*b_sd+b_mean,

 c = c*c_sd+c_mean,

)

a_mean

b_mean

c_mean

em_mean

res4 is the classification result of em and kmeans

res4 = res2$cluster %>%

 as.data.frame() %>%

 dplyr::select(-1) %>%

 mutate(country = region_index) %>%

 dplyr::select(2,1) %>%

 rename(em_class = col) %>%

 mutate(

 kmeans_class = clusters$cluster

)

kmean_mean = clusters$centers %>%

 as.data.frame()

mean_value = rbind(em_mean,kmean_mean) %>%

 mutate(method = c("em","em","kmeans","kmeans")) %>%

 dplyr::select(c(4,1,2,3))

mean_value_1 = rbind(mean_value[1,], mean_value[3,])

mean_value_1

mean_value_2 = rbind(mean_value[2,], mean_value[4,])

mean_value_2

res5 = res4 %>%

 mutate(em_a = ifelse(em_class == 1, mean_value[1,2], mean_value[2,2]),

 em_b = ifelse(em_class == 1, mean_value[1,3], mean_value[2,3]),

 em_c = ifelse(em_class == 1, mean_value[1,4], mean_value[2,4]),

 kmean_a = ifelse(kmeans_class == 1, mean_value[3,2], mean_value[4,2]),

 kmean_b = ifelse(kmeans_class == 1, mean_value[3,3], mean_value[4,3]),

 kmean_c = ifelse(kmeans_class == 1, mean_value[3,4], mean_value[4,4]))

final = cbind(res5, res[,1:3]) %>%

 mutate(a_em_error = abs(em_a-a)^2,

 a_kmeans_error = abs(kmean_a-a)^2,

 b_em_error = abs(em_b-b)^2,

 b_kmeans_error = abs(kmean_b-b)^2,

 c_em_error = abs(em_c-c)^2,

 c_kmeans_error = abs(kmean_c-c)^2)

error = final %>%

 mutate(em_error = sqrt(a_em_error + b_em_error + c_em_error),

 kmeans_error = sqrt(a_kmeans_error + b_kmeans_error + c_kmeans_error))

em_error = sum(error$em_error)

em_error

kmeans_error = sum(error$kmeans_error)

kmeans_error

raw = read.csv("covid19-1.csv") %>% janitor::clean_names()

raw$date2 <- mdy(raw$date)

raw$start <- as.Date("2020-01-21")

raw = raw %>%

 mutate(t = date2 - start)

data = raw %>%

 group_by(country_region,

 date2, t) %>%

 summarise(concases = sum(confirmed_cases)) %>%

 ungroup()

data = data %>% filter(!concases == 0)

data %>%

 ggplot(aes(x = date2, y = concases)) +

 geom_point(aes(color = country_region)) +

 theme(legend.position = "none")

cont = data %>%

 group_by(country_region) %>%

 summarise(cont = n())

data = left_join(data, cont, by = "country_region")

covid = data %>% mutate(t = t - (max(t) - cont)) %>%

 mutate(t = as.numeric(t),

 country = country_region) %>%

 dplyr::select(-cont, -country_region)

membership = left_join(covid, final, by = "country")

covid %>% distinct(country_region)

membership %>% distinct(country)

membership %>% drop_na()

em_1 = membership %>% filter(em_class == 1) %>% distinct(country)

em_1

membership %>% drop_na() %>%

 ggplot(aes(x = t, y = concases)) +

 geom_point(aes(color = factor(em_class)))

membership %>% filter(kmeans_class == 1) %>% distinct(country)

membership %>% drop_na() %>%

 ggplot(aes(x = t, y = concases)) +

 geom_point(aes(color = factor(kmeans_class)))

finding optimal cluster number

em_dat_scaled <- scale(em_dat)

use silhouette

fviz_nbclust(em_dat_scaled, kmeans, method = "silhouette",k.max=15)

use Gap Statistic Method

library(cluster)

set.seed(123)

gap_stat <- clusGap(em_dat_scaled, FUN = kmeans, nstart = 25,

 K.max = 10, B = 50)

fviz_gap_stat(gap_stat)

